
RESEARCH PAPER

Methodological Comparison of In Vitro Binding Parameter
Estimation: Sequential vs. Simultaneous Non-linear Regression

C. Steven Ernest II & Andrew C. Hooker & Mats O. Karlsson

Received: 3 November 2009 /Accepted: 9 February 2010 /Published online: 11 March 2010
# Springer Science+Business Media, LLC 2010

ABSTRACT
Purpose Analysis of simulated data was compared using
sequential (NLR) and simultaneous non-linear regression
(SNLR) to evaluate precision and accuracy of ligand binding
parameter estimation.
Methods Commonly encountered experimental error, spe-
cifically residual error of binding measurements (RE), experi-
ment-to-experiment variability (BEV) and non-specific binding
(BNS), were examined for impact of parameter estimation using
both methods. Data from equilibrium, dissociation, association
and non-specific binding experiments were fit simultaneously
(SNLR) using NONMEM VI compared to the common
practice of analyzing data from each experiment separately
and assigning these as exact values (NLR) for estimation of the
subsequent parameters.
Results The greatest contributing factor to bias and variability in
parameter estimation was RE of the measured concentrations of
ligand bound; however, SNLR provided more accurate and less
bias estimates. Subtraction of BNS from total ligand binding data
provided poor estimation of specific ligand binding parameters
using both NLR and SNLR. Additional methods examined
demonstrated that the use of SNLR provided better estimation
of specific binding parameters, whereas there was considerable
bias using NLR. NLR cannot account for BEV, whereas SNLR
can provide approximate estimates of BEV.
Conclusion SNLR provided superior resolution of parameter
estimation in both precision and accuracy compared to NLR.

KEY WORDS BEV, between-experiment variability . BNS,
non-specific binding . NLR, sequential non-linear regression .
SNLR, simultaneous non-linear regression . α, proportional
constant relating non-specific binding to ligand concentration

INTRODUCTION

Estimation of ligand binding parameters to receptors in vitro
constitutes a basic operation in many areas of scientific
research. Estimation of these parameters provides crucial
information to understanding agonist and antagonist
selectivity for binding sites. Therefore, accurate determina-
tion of these parameters is important for evaluation of
newly synthesized ligand potency, interactions with other
molecules, and prediction of in vivo performance. Numerous
investigations are devoted to the determination of ligand
binding parameters. Most prevalent are equilibrium experi-
ments where the primary aim is to provide information on
the progressive saturation of receptors by the ligand of
interest. These experiments predominantly are performed
to provide estimates of maximum binding capacity and the
affinity of the ligand to the binding site (1). Additionally,
association and dissociation time-course experiments are
used to optimize conditions for subsequent use in equilib-
rium experiments and demonstrate the reversibility of
ligand-receptor interaction. Association time-course experi-
ments allow the determination of rate of binding of ligand
to receptor and the time at which equilibrium has been
achieved. Data from dissociation time-courses are also used
to calculate the dissociation rate constant(s) and to test
whether the data from the dissociation kinetic experiment
suggest heterogeneity of binding sites (2). These experi-
ments are usually considered secondary but can sometimes
provide superior resolving power, especially for multiple
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binding sites, a situation difficult to accurately resolve with
equilibrium experiments (3).

However, information obtained is not useful if the data
are unduly influenced by procedural errors. Misleading
results could occur due to experimental artifacts, such as
radioactivity background, improper subtraction of non-
specific binding, ligand heterogeneity, and errors occurring
during separation of bound and free radioligand (4). These
problems could result in misinterpretation of the equilibrium
dissociation constant, number of binding sites, specific
binding site concentration, and association or dissociation
rate constants. Many studies have evaluated the data
provided by these various experiments independently and
estimated parameters separately either through linear
regression on transformed data or non-linear regression
(NLR) (5–8). These approaches require that parameter
estimates from one experiment are indefectible when
introduced for parameter estimation of subsequent experi-
ments (a sequential approach). Thus, error in the determina-
tion of one parameter could be propagated unduly
influencing subsequent parameter estimation.

An analysis of data from the combination of equilibrium
and kinetic experiments performed simultaneously could
overcome the limits and shortcomings of each specific
technique. Previous published work has demonstrated that
the use of a simultaneous analysis of data has had superior
resolving ability to estimate parameters compared to NLR
(9). The focus of this previous work was concerned with
detailing the resolution of two binding sites, relative binding
densities, receptor occupancy and number of data points.
The focus of this study is to compare simultaneous non-linear
regression (SNLR) to NLR in terms of bias and precision with
factors commonly encountered during experimentation,
namely, measurement error, between experiment variability
and non-specific binding. Examination of how these factors
influence parameter estimates based on both methods as well
as techniques to resolve these issues will be explored by
applying Monte Carlo simulation techniques.

MATERIALS AND METHODS

In this study, the performance of methods for modeling ligand
binding data was explored using Monte Carlo simula-
tion. Data simulation and analysis were performed using
NONMEM version VI (ICON, Ellicott City, MD). Models
were estimated using the first-order conditional estimation
method (FOCE) with interaction (INTER) when needed (10).

Simulation of Ligand Binding Data

Ligand binding data were simulated for equilibrium,
dissociation, association and non-specific binding experiments

to compare the estimation of parameters with sequential non-
linear regression versus simultaneous non-linear regression
under various different experimental conditions. Data were
simulated using Eqs. 1–4 (9):
Equilibrium:

Beq ¼
Xn
r¼1

Bmax;r»L
k�r
kr

þ L
þ a»L ð1Þ

Dissociation:

BdisðtÞ ¼
Xn
r¼1

Bmax;r»L
k�r
kr

þ L
» 1� e�ðL»krþk�rÞ»t
h i

»e�k�r t�tð Þ þ a»L

ð2Þ
Association:

BassðtÞ ¼
Xn
r¼1

Bmax;r»L
k�r
kr

þ L
» 1� e� L»krþk�rð Þ»t
h i

þ a»L ð3Þ

Non-Specific Binding:

BNS ¼ a»L ð4Þ
where r represents the binding site number, n represents
the total number of binding sites, Bmax,r represents the total
binding site concentration for receptor r, k-r is the rate
constant of dissociation for receptor r, kr is the rate constant
for association for receptor r, L is ligand concentration, τ
represents the time at which association is stopped and
dissociation is initiated, and α is the proportional constant
relating non-specific binding to ligand concentration. It is
assumed that L>>Beq for pseudo-first-order approximation,
and equilibrium was attained before initiation of dissociation.

For each experimental condition (see below), 1,000
datasets were generated by simultaneously simulating data
using Eqs. 1–4 assuming one binding site (n=1). Sampling,
ligand concentrations and binding parameter values were
based loosely on those previously reported (5). Each dataset
consisted of duplicate samples for the equilibrium experi-
ment and 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 min in the
association phase at ligand concentrations of 20, 100, 200,
300, 400, 500 pM and duplicate samples at 90, 95, 100, 110,
120, 130, 140, 15, 160, 170, 180 min at a ligand concen-
trations of 200 pM in the dissociation phase. Non-specific
binding was time-matched for samples simulated previously,
and percent bound was based on highest ligand concentration
at equilibrium. The binding parameters were as follows:
Bmax,1=3.7 pM, k-1=0.026 min−1, k1=0.000085 min−1pM−1,
and elimination half-life was equal to 26.7 min.

Experimental Conditions

Different experimental conditions were examined with the
introduction of proportional residual error (RE), between-
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experiment variability (BEV) using similar techniques as
described previously as inter-occasion variability (11), and
non-specific binding (BNS) of ligand to sites other than
receptor of interest. The specifics for each simulation/
estimation for the experimental conditions described below
are detailed in Table 1.

Residual Error (RE)

In all experimental conditions, the ligand binding data was
simulated and analyzed with a proportional RE model (Eq. 5):

Yij ¼ Bj» 1þ "ij
� � ð5Þ

where Yij is the i
th sample of the jth binding model, Bj is the j

th

model predicted binding response (i.e. Beq, Bdiss, Bass, BNS), and
εij is the corresponding residual random variability. εij is
assumed to be normally distributed with zero mean and a
variance of σ2.

Between-Experiment Variability (BEV)

In some experimental conditions, the ligand binding data
was simulated with BEV (Eq. 6) where the mth parameter
for experiment k, Pmk is defined as

Pmk ¼ f Pm; kmkð Þ ð6Þ

where Pm is a typical value of parameter m in the population
and κmk is assumed to be an independently and normally
distributed parameter with mean zero and variance πm

2. The
κmk represents between experiment differences (11).

In experiments where BEV was included, the SNLR
estimation method was analyzed both with and without this
model component to investigate the effect of ignoring BEV in
estimation. In the sequential NLR technique BEV cannot be
estimated and was thus ignored in the estimation step.

Non-specific Binding (BNS)

In some experimental conditions, non-specific binding
(BNS) was assumed to be present in the experiments. For
these conditions, the data was analyzed using two different
methodologies. Method one involved subtraction of BNS from
total binding measurements (Beq, Bdiss, Bass) at each sample
measurement and subsequent parameter estimation, and
method two involved estimation of the additional parameter
α seen in Eqs. 1–4. For the second method, α was estimated
both with and without inclusion of the simulated non-specific
binding measurements (i.e. including Eq. 4 in the analysis or
not) for SNLR. The non-specific binding estimates used for
simulations based on highest ligand concentration at
equilibrium were 0.00025, 0.00052, 0.00081, 0.00115 and
0.0015 for 5, 10, 15, 20 and 25% BNS, respectively.

Sequential Non-linear Regression (NLR)
and Simultaneous Non-linear Regression (SNLR)

NLR

In this work, parameter estimation based on sequential
non-linear regression, the simulated non-specific binding
data was analyzed first (if present) using the model in Eq. 4.
The α parameter was then introduced as a constant for all
subsequent analyses. Next the equilibrium data was analyzed
using Eq. 7:

Beq ¼
Xn
r¼1

Bmax;r»L

Kd;r þ L
þ a»L ð7Þ

where Kd,i represents the apparent dissociation constant
(k-r/kr – 306 pM) and estimating both Bmax,1 and Kd,1. Bmax,1
and α were then introduced as constants for all subsequent

Table 1 Details of Experimental Conditions

Experimental condition Simulation settings Estimation Eqs. used Comment

RE BEV BNS NLR SNLR

1 0–25% – – 7,2,3,5 1,2,3,5 α set to zero

2.a 0–25% 0–25% – 7,2,3,5 1,2,3,5,6 BEV on RE; α set to zero; SNLR estimated without
BEV on RE

2.b 0–25% 0–25% – 7,2,3,5 1,2,3,5 BEV on RE; α set to zero; SNLR estimated including
BEV on RE

3.a 0–25% 0–25% – 7,2,3,5 1,2,3,5,6 BEV on Bmax,1; α set to zero; SNLR estimated
without BEV on Bmax,1

3.b 0–25% 0–25% – 7,2,3,5 1,2,3,5 BEV on Bmax,1; α set to zero; SNLR estimated
including BEV on Bmax,1

4.a 0–25% – 0–25% 7,2,3,5 1,2,3,5 Subtraction of BNS from total binding; α set to zero

4.b 0–25% – 0–25% 7,2,3,5 1,2,3,5 Estimation of α without inclusion of BNS data

4.c 0–25% – 0–25% 4,7,2,3,5 1,2,3,4,5 Estimation of α with inclusion of BNS data
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analyses. Next the dissociation data was analyzed using
Eq. 2, and both k1 and k-1 were estimated. Subsequently, k-1,
Bmax,1 and α estimates were then used as constants for
estimation of k1 using the association data and Eq. 3. One
RE parameter was estimated per step.

SNLR

Simulated data from equilibrium, dissociation and associ-
ation experiments were fitted simultaneously to Eqs. 1–3 to
estimate binding parameters. In addition, Eq. 4 was
introduced to the model to estimate BNS when indicated.
One RE parameter was estimated per model. When
indicated, BEV was also assessed.

Bias and Imprecision in Parameter Estimates

Bias (%) and imprecision in parameter estimates using
the root mean squared error (RMSE,%) were estimated
(Eqs. 8 and 9):

%Bias ¼ 100%

qT»N

XN
s¼1

qs � qTð Þ ð8Þ

%RMSE ¼ 100%

qT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
s¼1

qs � qTð Þ
2

vuut ð9Þ

where s is the sth simulated data set (s = 1, 2, . . ., N), θs is
the typical value of parameter estimates from the sth data
set, and θT is the true parameter value used in simulation.

Pharmacostatistical Analysis

NONMEM minimizes an objective function value (OFV),
which is a global measure of the goodness of fit. The
likelihood ratio test was used to test the effect of inclusion of
BEV. In this test, the difference between OFV for a model
containing n parameters and those containing n–1 param-
eters was assumed to approximate the Chi-square distribu-
tion with one degree of freedom. An a priori level of
significance of p<0.05 was chosen which corresponds to a
decrease in OFV of >3.841 when a single parameter is
introduced. Beyond the decrease in OFV, evaluation of
error of the estimate and impact on other parameter
estimates was evaluated for inclusion into model (12,13).

RESULTS

Based on the ligand binding parameters used for simulations
for the equilibrium, association and dissociation experiments,

equilibrium was attained approximately 90 min after initia-
tion of the association phase for 200 pM ligand concentration.
Thus, 90 min was selected as “τ” at which dissociation was
initiated and approximately 98% equilibrium was achieved.

In experimental setup 1, the effect of unexplained
random variability, i.e. RE, in measurement of ligand
binding data on parameter estimates using the NLR versus
SNLR methods was examined. Across the span of RE used
in these simulations, both methods typically provided
unbiased model-based parameter estimates (<1%) that
corresponded to the true estimates. However, as RE
increased, there was slight increase in bias for the Bmax,1

estimate up to 8% when the NLR was used. Overall, both
methods provided precise estimates, but the accuracy was
greater with the SNLR. The precision of parameter
estimates using the SNLR was higher than those resulting
from the use of NLR (Fig. 1). For example, at 25% RE, the
RMSE was 30% for Bmax,1 using the NLR and 8% for the
SNLR. This relative difference in RMSE was observed
across all three parameters and span of RE.

Parameter estimation can be significantly affected by
methodological procedure or technique disparity between
experiments. The effect of this BEV was examined in two
different manners (experimental setup 2 and 3). Experi-
mental setup 2.a included variability on the RE owing to
unspecified differences in ligand binding measurement
among experiments, while this variability was ignored in
the estimation step. Parameter estimates obtained using
both the NLR and SNLR provided reasonable estimates for
the dissociation rate constant, k-1, with a bias <1% and an
RMSE of <8%. However, both methods demonstrated bias
estimates for Bmax,1. Using the NLR, bias increased from 0
to 8% as the RE increased but remained relatively constant
as BEV increased. There was a 6–7% bias in the estimate
of Bmax,1 using the SNLR regardless of the extent of BEV
and RE. Only the NLR showed bias in the association rate
constant (10–11%) across the range of BEV. The variability
of parameter estimates, RMSE, between experimental
conditions was relatively unaffected. The RMSE estimates
are similar to those obtained when only RE was included in
the simulations. Thus, the parameter estimates using the
SNLR were more precise than those using the NLR.

In experimental setup 2.b, attempts to account for the
bias in the estimate of Bmax,1 when using the SNLR were
examined by implementing BEV on Bmax,1. However, the
parameter could not be estimated across the range of BEV
and RE included in the simulations, and no further
resolution of bias was attained.

In experimental setup 3.a, BEV was ascribed to the
intrinsic quantity of receptors contained per experiment,
Bmax,1, but no BEV was assumed in the estimation step.
Both NLR and SNLR demonstrate reasonably comparable
increases in bias as both residual variability and BEV
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increased for estimates of Bmax,1 up to 10% (Fig. 2).
However, the RMSE was less with SNLR compared to
NLR and relatively consistent across increase in residual
variability (Fig. 3). Estimation of k-1 was reasonably
unbiased (<2%) using both NLR and SNLR, albeit higher
with SNLR, and the RMSE was substantially higher with
SNLR but consistent with changes in RE variability. The
RMSE was consistent across increase in BEV for estimation
of k-1 using NLR. Less than 1% bias was observed for
estimation of k1 using SNLR and RMSE less than 40%.
However, there was an increase in bias up to 10% for
k1 estimation using NLR and higher RMSE up to 60%
using NLR.

In experimental setup 3.b, estimation of BEV on Bmax,1

was attempted with the SNLR method. The inclusion of
BEV on Bmax,1 provided substantially decreased bias
estimates of Bmax,1 and k-1 and resulted in significantly
reduced RMSE for all three parameters (Figs. 2 and 3).

When BEV was included on Bmax,1, there was greater than
88% power to detect a significant change in OFV
compared to the basic model without BEV for all but
six of the experimental conditions explored (Table 2).
However, when residual variability greatly exceeded the
BEV, there was less power to detect BEV as a significant
model parameter, and the precision of these BEV estimates
was poor. Nevertheless, parameter estimates with rejection
of inclusion of BEV on Bmax,1 for these experimental
conditions was not greatly biased or variable. The bias of
BEV estimates is listed in Table 2. Generally, the BEV was
estimated reasonably well, particularly when the BEV was
greater or near the RE values. However, when RE greatly
exceeded the BEV, the estimates approached the maximum
of −34% bias. The same relationship was observed for
RMSE and bias.

Ligand binding measurements usually are comprised of
both specific and non-specific binding. Typically, the

Fig. 1 Distribution of Bmax,1, K-1
and K1 estimates using the NLR
(gray) and SLNR (white). Box
plots graph data as a box repre-
senting statistical values describing
the 5th, 10th, 25th, 50th, 75th,
90th and 95th
percentiles.
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amount of non-specific binding is subtracted from total
binding on a time-matched basis for parameter estimation
related to specific binding (experimental condition 4.a).
This method was examined to assess the impact of non-
specific binding on specific binding parameter estimation.
The results demonstrate that this subtraction method of
quantifying the specific binding parameters leads to
significantly biased estimates of all parameters (Fig. 4) and
increased the overall distribution of expected values for
both NLR and SNLR (data not presented). For example,
the maximum bias using the NLR method increased from

8% without BNS to 17% with subtraction of BNS for Bmax,1

and less than 1% to 8% using SNLR. However, the SNLR
still performed with better fidelity than the NLR, as the bias
and RMSE were much smaller, although this method of
estimation does not appear an appropriate method for
specific ligand binding parameter estimation.

Another alternative approach for handling non-specific
binding is to include an extra term, α, proportional to
ligand concentration to the fitted kinetic and equilibrium
equations that relate the non-specific binding to total
binding (experimental condition 4.b). The NLR estimate

Fig. 2 Percent bias of Bmax,1, K-1 and K1 estimates using the NLR and SLNR with BEV on Bmax,1.
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Fig. 3 Percent RMSE of Bmax,1, K-1 and K1 estimates using the NLR and SLNR with BEV on Bmax,1.

RE/BEV Percent of Runs (% Bias of BEV Estimate)

5% 10% 15% 20% 25%

5% 99.9 (−7.31) 100 (−4.25) 100 (−3.87) 100 (−3.71) 100 (−3.61)

10% 77.0 (−16.1) 99.9 (−7.31) 100 (−4.95) 100 (−4.13) 100 (−3.81)

15% 35.6 (−25.4) 95.5 (−12.5) 100 (−7.52) 100 (−5.83) 100 (−4.77)

20% 15.0 (−31.0) 79.2 (−17.8) 97.3 (−12.0) 99.9 (−8.79) 100 (−6.27)

25% 8.00 (−34.1) 58.0 (−22.3) 91.7 (−15.0) 98.4 (−11.9) 99.8 (−8.98)

Table 2 Percentage of Runs
with BEV Included on Bmax,1

(experimental condition 2.b) with
Significant Change in OFV Relative
to No Inclusion of BEV
(experimental condition 2.a)
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of the proportional constant α relating BNS to total binding
were several fold higher than used during the simulations
(data not shown). As a consequence of poor α estimation,
Bmax,1, k-1 and k1 were significantly biased and imprecise
by; several orders of magnitude.

An additional attempt to resolve the estimation of these
parameters by NLR was examined by estimating α for each
specific experiment and using those estimates in subsequent
analyses to estimate specific binding parameters (experi-
mental condition 4.c). Regardless of the degree of BNS, the
estimates of α were relatively consistent within each level of
residual variability. However, there was a slight increase in

bias and RMSE as residual variability increased—greatest
for the equilibrium experiment. Overall, the estimates of α
showed less than 1% bias, and the RMSE was less than 8%.
Significant improvement of the estimation of the ligand
binding parameters was observed compared to the previ-
ously mentioned method. The bias for k-1 and k1 ranged
from −2 to 1%, and the RMSE was less than 40%.
However, the bias for the estimation of Bmax,1 was up to
15%, and the RMSE was 50%. As increased RE would
affect both the specific and BNS, there was a slight increase
in bias and RMSE using NLR as RE and BNS increased
(Figs. 5 and 6).

Fig. 4 Percent bias of Bmax,1, K-1
and K1 estimates using the NLR
and SLNR with subtraction of BNS.
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In contrast, estimation of the specific ligand binding
parameters utilizing SNLR were less than 5% biased, and
RMSE did not exceed 20% with inclusion of the propor-
tional constant α relating BNS to total binding when
simultaneously analyzed (experimental condition 4.b). The
estimates of α were relatively consistent within each level of
residual variability. The estimates of α showed less than 1%
bias, and the RMSE was less than 8% when RE and BNS

were less than 15% and 20%, respectively. Above 15% RE,
bias increased to 5% and RMSE 28%. As RE and BNS

increased, the bias and RMSE using SNLR remained
relatively consistent to estimates obtained without BNS,

except when residual variability was above 15%, there was
a slight increase (Figs. 5 and 6).

Whether the addition of the data from the non-specific
binding to the dataset and including an additional equation
to the model would provide any additional benefit of
parameter estimates using SNLR (experimental condition
4.c) was also examined. The results demonstrated small
improvement of the bias and RMSE for parameter
estimates but were approximately equivalent to not
including the data (Figs. 5 and 6). However, the estimation
of α was significantly improved where the bias was less than
0.05% and RMSE was less than 2%. Overall, estimation of

Fig. 5 Percent bias of Bmax,1, K-1 and K1 estimates using the NLR and SLNR with addition of α of BNS.
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the specific ligand binding parameter when BNS is present
was significantly improved using SNLR with less bias and
RMSE compared to NLR whether subtracting the BNS or
inclusion of an additional term.

DISCUSSION

The methods described in this article provide insight
into the advantages and disadvantages of using sequential
non-linear least squares curve fitting and simultaneous non-

linear curve fitting in ligand binding parameter estimation.
The use of sequential non-linear least squares curve fitting
provides an advantage of the use of transformed ligand
binding data used in linear regression for parameter
estimation by computing variance of measured binding;
however, interdependence of parameter estimation is not
resolved via this method. Estimation of ligand binding
parameter by simultaneously fitting all the data from these
experiments can reveal this interdependence by the correla-
tion matrix and can further identify variability across experi-
ments. Additionally, SNLR provides a single residual

Fig. 6 Percent RMSE of Bmax,1, K-1 and K1 estimates using the NLR and SLNR with addition of α of BNS.
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variability estimate that allows for statistical discrimination
between nested models. Thus, these values describe the
distribution of the unexplained random variability between
the estimated parameters and noise in the measurements.

A variety of experimental conditions was applied to both
NLR and SNLR. Overall, SNLR provided superior
resolution of parameter estimates in terms of both precision
and accuracy across all these conditions. The greatest
contributing factor to bias and variability in parameter
estimation was attributed to residual variability of the
measured concentrations of total ligand bound. The use of
NLR did not allow for the measurement error across
experiments to be used in determination of these param-
eters and considered each parameter indefectible for the
subsequent experiment. However, SNLR utilized data from
all experiments and did not necessitate treating observa-
tions or estimated parameters as error free. This factor was
observed more prevalently at higher levels of residual
variability, but even at lower levels there was still better
estimation using SNLR, especially for Bmax,1 and k1. The
fitting sequence using NLR did not have an undue effect on
parameter estimation (i.e. association experiment preceded
equilibrium experiment or vice-versa) or increase in precision
or variability of Bmax,1 and k1. Effectively, when dissociation
data was fit without inclusion of a fixed value of Bmax,1, the
equation reduced to that in Eq. 10 and provided k-1
parameter estimated less than 0.1% different than when
Bmax,1 was assumed known.

BdisðtÞ ¼
Xn
r¼1

Bo»e
�k�r t�tð Þ þ a»L ð10Þ

Using this value as known and not including Bmax,1

provided k1 estimates that were no more biased than
initially evaluated, and subsequently the same was observed
for the estimation of Bmax,1. In this regard, NLR provided
more bias and variable estimates of these parameters
compared to SNLR. Although a constant coefficient of
error proportional to the concentration of bound ligand
was used for simulations and estimation of binding
parameter values, additional RE models could be applied
and expected to be better resolved using SNLR.

Another significant contributing factor to bias and
variability in parameter estimation was non-specific binding
and the method used to estimate the impact of this on
specific binding parameter estimation. Overall, subtraction
of BNS from total ligand binding data provided poor
estimation of specific ligand binding parameters using both
NLR and SNLR. This method does not allow for the
residual variability associated with measurement of BNS to
be separated from that of specific binding and effectively
disseminates an increase in the variability of assumed
specific binding measurements. However, this method is
prevalently used in many ligand binding studies as a

method to estimate specific binding parameters (5–8,14).
In light of this shortcoming of computing BNS, additional
methods were examined and demonstrated for NLR; a
better approach was to estimate α for each experiment.
However, this method, while providing better parameter
estimates, did not utilize the error associated to the
measurement of BNS. The use of SNLR provided better
estimation of specific binding parameters regardless of the
use of BNS data; however, the estimates were significantly
better when this data was included in the modeling.
Although the experimental design was not optimal, includ-
ing an additional ligand concentration (1,200 pM) to the
experiment well above Kd still did not provide much
improvement in the bias estimate of Bmax using NLR
(∼140%) with RE and α at 25%. Thus, this information
provides further evidence that this method of analysis has
significant limitations. Additionally, a major assumption for
BNS was that it was constant over time and proportional to
total ligand concentration. Another major advantage of
using SNLR is if BNS displays a different relationship, it can
be modeled and incorporated into the equations, whereas it
might not be able to be estimated for each experiment
independently as used in NLR.

Finally, the impact of two sources of experiment-to-
experiment variability was assessed on the impact of bias
and variability on binding parameter estimation. The
experiment-to-experiment differences associated with assay
measurements led to cumulatively higher bias and impre-
cision than expected from residual variability alone. The
most notable impact was on the estimation of k1 for NLR
and Bmax,1 for SNLR. However, overall, SNLR performed
better to approximate the true values. Variability associated
with the intrinsic quantity of receptors contained per
experiment, Bmax,1 led to estimates approximately equiva-
lent utilizing both methods when estimation of this
variability was not accounted for using SNLR. With
inclusion of estimates of BEV on Bmax,1 for SNLR, this
method proved superior in the estimation of the binding
parameters. There was still some unresolved bias in the
estimation of the BEV; however, this estimation became
confounded with RE. These sources of variability in
binding measurement can be attributed to many factors
including binding affinity, uniformity of binding, stability
on storage, working temperature and handling procedures
(15), and without accounting for these in at least a portion
leads to biased estimates.

Cumulatively, these factors mentioned above play an
important role on the quantification of the specific ligand
binding parameter estimation. Whereas for all cases, SNLR
performed with better precision and accuracy in as much as
if each of these factors were included into the simulation
and estimation of these experiments, this method would
provide better approximation to the true values. For
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example, providing a modest range of variability of 10% as
might be expected within each of these factors on BEV,
BNS and residual variability, the overall bias of Bmax,1 and
k1 was ∼5 times less using SNLR (accounting of BEV)
compared to NLR and the RMSE was ∼2.5 times less for
Bmax,1 and k1. Additionally, the estimation of the dissoci-
ation binding constant, Kd, was significantly biased using
NLR compared to SNLR. While specific values were used
for these simulations, the relative merit of using SNLR over
NLR is applicable to a range of parameter estimates and
experimental conditions.

From the considerations mentioned above, it is clear that
SNLR is the preferred method for ligand binding param-
eter estimation based on superior estimation properties,
statistical advantages, and easy implementation. The use of
SNLR required a reduced number of both model and data
files and transfer of data. Additionally, utilizing SNLR data
from multiple experiments can increase the power and
precision of parameter estimates, and supplementary
parameters can be added to account for different levels of
variability. Furthermore, increased complexity of ligand-
receptor interaction, increased binding sites, can be easily
assessed based on changes of statistical inference, specifi-
cally the objective function value, whereas with NLR this
comparison becomes increasingly more difficult.

CONCLUSION

As drug development becomes more costly and time
consuming, accurate estimation and prediction of param-
eters related to physiological conditions becomes vital for
the pursuit of better molecular entities in treating diseases.
One method useful in drug development is the use of in
vitro–in vivo correlation. Describing uncertainty related to
the modeled parameter estimates and data can provide
invaluable insight into the probability of predicting which
molecules will perform with better reliability. The SNLR
method described in this article can provide better
approximation of the true values obtained from in vitro
experiments for predicted performance in vivo leading to
increase chance of choosing better molecules. This increase
in probability of choosing better molecules can decrease the
overall time and cost associated with drug development.

Although the focus of this article is related to one binding
site, these methods could be applied to multiple binding
sites as previously demonstrated (16).
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